Below are the reading lists I created while studying for my preliminary exams. These lists include publications through early 2017. If you would like to receive soil ecology reading lists with recent publications, please sign up for the monthly Soil Ecology Reader.

Topics include:

  • soil ecology modern classics

  • biogeochemistry

  • foundational papers in ecology

  • pyrogenic carbon cycling

  • fire and soils

  • soil food webs & soil fauna

  • soil organic matter

  • disturbance and global change

  • science education and communication

  • miscellaneous papers

  • relevant books 

Fire Ecology; Fire & Soils

  1. Abbott, B. W., Jones, J. B., Schuur, E. A., Chapin III, F. S., Bowden, W. B., Bret-Harte, M. S., ... & Mack, M. C. (2016). Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 11(3), 034014.

  2. Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1-10.

  3. Certini, G. (2014). Fire as a soil-forming factor. Ambio, 43(2), 191-195.

  4. Doerr, S. H., & Cerdà, A. (2005). Fire effects on soil system functioning: new insights and future challenges. International Journal of Wildland Fire, 14(4), 339-342.

  5. González-Pérez, J. A., González-Vila, F. J., Almendros, G., & Knicker, H. (2004). The effect of fire on soil organic matter—a review. Environment international, 30(6), 855-870.

  6. Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A., Shaver, G. R., & Verbyla, D. L. (2011). Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475(7357), 489-492.

  7. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., & Zavala, L. M. (2011). Fire effects on soil aggregation: a review. Earth-Science Reviews, 109(1), 44-60.

  8. Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: a review and synthesis. Forest ecology and management, 122(1), 51-71.

  9. Peterson, D. W., & Reich, P. B. (2001). Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecological Applications, 11(3), 914-927.

  10. Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74(3), 269-307.

  11. Treseder, K. K., Mack, M. C., & Cross, A. (2004). Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecological Applications, 14(6), 1826-1838.

  12. Wan, S., Hui, D., & Luo, Y. (2001). Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta‐analysis. Ecological Applications, 11(5), 1349-1365.

  13. Wardle, D. A., Zackrisson, O., & Nilsson, M. C. (1998). The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia, 115(3), 419-426.

Pyrogenic Carbon Cycle

  1. Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., & McBeath, A. (2015). The pyrogenic carbon cycle. Annual Review of Earth and Planetary Sciences, 43, 273-298.

  2. Cotrufo, M. F., Boot, C., Abiven, S., Foster, E. J., Haddix, M., Reisser, M., ... & Schmidt, M. W. (2016). Quantification of pyrogenic carbon in the environment: An integration of analytical approaches. Organic Geochemistry, 100, 42-50.

  3. Cotrufo, M. F., Boot, C. M., Kampf, S., Nelson, P. A., Brogan, D. J., Covino, T., ... & Schmeer, S. (2016). Redistribution of pyrogenic carbon from hillslopes to stream corridors following a large montane wildfire. Global Biogeochemical Cycles, 30(9), 1348-1355.

  4. Czimczik, C. I., & Masiello, C. A. (2007). Controls on black carbon storage in soils. Global Biogeochemical Cycles, 21(3).

  5. Guggenberger, G., Rodionov, A., Shibistova, O., Grabe, M., Kasansky, O. A., Fuchs, H., ... & Flessa, H. (2008). Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Global Change Biology, 14(6), 1367-1381.

  6. Güereña, D. T., Lehmann, J., Walter, T., Enders, A., Neufeldt, H., Odiwour, H., ... & Wurster, C. (2015). Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa. Global Biogeochemical Cycles, 29(11), 1911-1928.

  7. Hammes, K., Schmidt, M. W., Smernik, R. J., Currie, L. A., Ball, W. P., Nguyen, T. H., ... & Cornelissen, G. (2007). Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 21(3).

  8. Jaffé, R., Ding, Y., Niggemann, J., Vähätalo, A. V., Stubbins, A., Spencer, R. G., ... & Dittmar, T. (2013). Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science, 340(6130), 345-347.

  9. Knicker, H. (2011). Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quaternary International, 243(2), 251-263.

  10. Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., ... & Krull, E. (2008). Australian climate–carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 1(12), 832-835.

  11. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., ... & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730.

  12. Maestrini, B., Nannipieri, P., & Abiven, S. (2015). A meta‐analysis on pyrogenic organic matter induced priming effect. Gcb Bioenergy, 7(4), 577-590.

  13. Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366-1379.

  14. Reisser, M., Purves, R., Schmidt, M. W., & Abiven, S. (2016). Pyrogenic Carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Frontiers in Earth Science, 4.

  15. Santín, C., Doerr, S. H., Preston, C. M., & González‐Rodríguez, G. (2015). Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global change biology, 21(4), 1621-1633.

  16. Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., Rosa, J. M., ... & Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global change biology, 22(1), 76-91.

  17. Santín, C., Doerr, S. H., Merino, A., Bryant, R., & Loader, N. J. (2016). Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma, 264, 71-80.

  18. Singh, N., Abiven, S., Torn, M. S., & Schmidt, M. W. I. (2012). Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences, 9(8), 2847-2857.

  19. Soong, J. L., & Cotrufo, M. F. (2015). Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Global change biology, 21(6), 2321-2333.

  20. Soong, J. L., Dam, M., Wall, D. H., & Cotrufo, M. F. (2016). Below‐ground biological responses to pyrogenic organic matter and litter inputs in grasslands. Functional Ecology.

Soil Ecology Modern Classics

  1. Allison, S. D., & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105(Supplement 1), 11512-11519.

  2. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173.

  3. Ettema, C. H., & Wardle, D. A. (2002). Spatial soil ecology. Trends in ecology & evolution, 17(4), 177-183.

  4. Fierer, N., Grandy, A. S., Six, J., & Paul, E. A. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41(11), 2249-2256.

  5. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology letters, 12(11), 1238-1249.

  6. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., ... & Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109(52), 21390-21395.

  7. Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress‐response physiology and its implications for ecosystem function. Ecology, 88(6), 1386-1394.

  8. Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85(3), 591-602.

  9. Strickland, M. S., & Rousk, J. (2010). Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42(9), 1385-1395.

  10. Talbot, J. M., Allison, S. D., & Treseder, K. K. (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional ecology, 22(6), 955-963.

  11. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters, 11(3), 296-310.

Soil Food Webs & Fauna

  1. Blankinship, J. C., Niklaus, P. A., & Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165(3), 553-565.

  2. Crotty, F. V., Adl, S. M., Blackshaw, R. P., & Murray, P. J. (2012). Using stable isotopes to differentiate trophic feeding channels within soil food webs. Journal of Eukaryotic Microbiology, 59(6), 520-526.

  3. de Ruiter, P. C., Neutel, A. M., & Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269(5228), 1257.

  4. de Ruiter, P. C., Wolters, V., Moore, J. C., & Winemiller, K. O. (2005). Food web ecology: playing Jenga and beyond. Science, 309(5731), 68-71.

  5. De Vries, F. T., Liiri, M. E., Bjørnlund, L., Bowker, M. A., Christensen, S., Setälä, H. M., & Bardgett, R. D. (2012). Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2(4), 276-280.

  6. García‐Palacios, P., Maestre, F. T., Kattge, J., & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16(8), 1045-1053.

  7. Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., ... & Morley, C. R. (1987). The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3(1), 57-68.

  8. Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. In Ecosystem management (pp. 130-147). Springer New York.

  9. Moore, J. C., Berlow, E. L., Coleman, D. C., Ruiter, P. C., Dong, Q., Hastings, A., ... & Nadelhoffer, K. (2004). Detritus, trophic dynamics and biodiversity. Ecology letters, 7(7), 584-600.

  10. Moore, J. C., McCann, K., Setälä, H., & De Ruiter, P. C. (2003). TOP‐DOWN IS BOTTOM‐UP: DOES PREDATION IN THE RHIZOSPHERE REGULATE ABOVEGROUND DYNAMICS?. Ecology, 84(4), 846-857.

  11. Moore, J. C., & William Hunt, H. (1988). Resource compartmentation and the stability of real ecosystems. Nature, 333(6170), 261-263.

  12. Moore, J. C., Walter, D. E., & Hunt, H. W. (1988). Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual review of entomology, 33(1), 419-435.

  13. Moore, J. C., McCann, K., & de Ruiter, P. C. (2005). Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia, 49(6), 499-510.

  14. Rooney, N., McCann, K., Gellner, G., & Moore, J. C. (2006). Structural asymmetry and the stability of diverse food webs. Nature, 442(7100), 265-269.

  15. Wall, D. H., Bradford, M. A., ST, J., Trofymow, J. A., BEHAN‐PELLETIER, V. A. L. E. R. I. E., Bignell, D. E., ... & Wolters, V. (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate‐dependent. Global Change Biology, 14(11), 2661-2677.

  16. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629-1633.

Soil Biology and Biochemistry Special Issue: Revisioning Soil Food Webs 2016

  1. Averill, C. (2016). Slowed decomposition in ectomycorrhizal ecosystems is independent of plant chemistry. Soil Biology and Biochemistry, 102, 52-54.

  2. Ballhausen, M. B., & de Boer, W. (2016). The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biology and Biochemistry, 102, 14-17.

  3. Buchkowski, R. W. (2016). Top-down consumptive and trait-mediated control do affect soil food webs: It’s time for a new model. Soil Biology and Biochemistry, 102, 29-32.

  4. DeAngelis, K. M. (2016). Chemical communication connects soil food webs. Soil Biology and Biochemistry, 102, 48-51.

  5. de Vries, F. T., & Caruso, T. (2016). Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biology and Biochemistry, 102, 4-9.

  6. Geisen, S. (2016). The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25.

  7. Grandy, A. S., Wieder, W. R., Wickings, K., & Kyker-Snowman, E. (2016). Beyond microbes: Are fauna the next frontier in soil biogeochemical models?. Soil Biology and Biochemistry, 102, 40-44.

  8. Hawlena, D., & Zaguri, M. (2016). Fear and below-ground food-webs. Soil Biology and Biochemistry, 102, 26-28.

  9. Kardol, P., Throop, H. L., Adkins, J., & de Graaff, M. A. (2016). A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biology and Biochemistry, 102, 33-36.

  10. King, J. R. (2016). Where do eusocial insects fit into soil food webs?. Soil Biology and Biochemistry, 102, 55-62.

  11. Morriën, E. (2016). Understanding soil food web dynamics, how close do we get?. Soil Biology and Biochemistry, 102, 10-13.

  12. Rousk, J. (2016). Biomass or growth? How to measure soil food webs to understand structure and function. Soil Biology and Biochemistry, 102, 45-47.

  13. Soong, J. L., & Nielsen, U. N. (2016). The role of microarthropods in emerging models of soil organic matter. Soil Biology and Biochemistry, 102, 37-39.

  14. Wolkovich, E. M. (2016). Reticulated channels in soil food webs. Soil Biology and Biochemistry, 102, 18-21.


  1. Archer, David, and Victor Brovkin. "The millennial atmospheric lifetime of anthropogenic CO2." Climatic Change 90.3 (2008): 283-297.

  2. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., ... & Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-892.

  3. Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., ... & Friedlingstein, P. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831-836.

  4. Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., ... & Vario, C. (2011). Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences, 108(23), 9508-9512.

  5. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260-262.

  6. Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48(1), 7-20.

  7. Schlesinger, W. H. (1977). Carbon balance in terrestrial detritus. Annual review of ecology and systematics, 8(1), 51-81.

Soil Organic Matter

  1. Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52(3), 345-353.

  2. De Baets, S., Van de Weg, M. J., Lewis, R., Steinberg, N., Meersmans, J., Quine, T. A., ... & Hartley, I. P. (2016). Investigating the controls on soil organic matter decomposition in tussock tundra soil and permafrost after fire. Soil Biology and Biochemistry, 99, 108-116.

  3. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global Change Biology, 19(4), 988-995.

  4. Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience.

  5. Grandy, A. S., & Neff, J. C. (2008). Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment, 404(2), 297-307.

  6. Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68.

  7. Masoom, H., Courtier-Murias, D., Farooq, H., Soong, R., Kelleher, B. P., Zhang, C., ... & Stronks, H. J. (2016). Soil Organic Matter in Its Native State: Unravelling the Most Complex Biomaterial on Earth. Environmental science & technology, 50(4), 1670-1680.

  8. Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Nannipieri, P. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

  9. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31.

Disturbance & Global Change

  1. Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A., & Stocks, B. (2015). Climate change presents increased potential for very large fires in the contiguous United States. International Journal of Wildland Fire, 24(7), 892-899.

  2. Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., ... & Blair, J. M. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104-108.

  3. Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual review of marine science, 1, 169-192.

  4. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global change biology, 8(4), 345-360.

  5. Hartmann, D. L., Tank, A. M. G. K., & Rusticucci, M. (2013). IPCC fifth assessment report, climate change 2013: The physical science basis. IPCC AR5, 31-39.

  6. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., ... & Dietze, M. C. (2015). Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment, 13(7), 369-377.

  7. Knapp, A. K., Ciais, P., & Smith, M. D. (2016). Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytologist.

  8. Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., ... & Heisler, J. L. (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58(9), 811-821.

  9. Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., ... & Morrisseau, S. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298(5601), 2173-2176.

  10. Richter, D. (2007). Humanity's transformation of Earth's soil: Pedology's new frontier. Soil Science, 172(12), 957-967.

  11. Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., & Schimel, J. P. (2013). Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497(7451), 615-618.

  12. Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91(10), 2833-2849.

Foundational Papers in Ecology

  1. Clements, Frederic Edward. Preface: Plant succession: an analysis of the development of vegetation. No. 242. Carnegie Institution of Washington, 1916.

  2. Connell, Joseph H. "Diversity in tropical rain forests and coral reefs." Science199.4335 (1978): 1302-1310.

  3. Elliott, Louis P., and Barry W. Brook. "Revisiting Chamberlin: multiple working hypotheses for the 21st century." BioScience 57.7 (2007): 608-614.

  4. Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual review of plant biology, 40(1), 503-537.

  5. Gleason, Henry A. "The individualistic concept of the plant association." American Midland Naturalist (1939): 92-110.

  6. Gould, Stephen Jay, and Richard C. Lewontin. "The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme." Proceedings of the Royal Society of London B: Biological Sciences 205.1161 (1979): 581-598.

  7. Hairston, Nelson G., Frederick E. Smith, and Lawrence B. Slobodkin. "Community structure, population control, and competition." American naturalist (1960): 421-425.

  8. Levin, Simon A. "The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture." Ecology 73.6 (1992): 1943-1967.

  9. Lindeman, Raymond L. "The trophic‐dynamic aspect of ecology." Ecology23.4 (1942): 399-417.

  10. Odum, Eugene P. "The strategy of ecosystem development." Sustainability: Sustainability 164 (1969): 58.

  11. Simberloff, Daniel S., and Edward O. Wilson. "Experimental zoogeography of islands: the colonization of empty islands." Ecology 50.2 (1969): 278-296.

  12. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294(5543), 843-845.

  13. Vitousek, Peter M., et al. "Human domination of Earth's ecosystems." Science 277.5325 (1997): 494-499.

Science Education & Communication

  1. Balgopal, M., & Wallace, A. (2013). Writing-to-learn, writing-to-communicate, & scientific literacy. The american biology Teacher, 75(3), 170-175.

  2. Balgopal, M. M., & Wallace, A. M. (2009). Decisions and dilemmas: Using writing to learn activities to increase ecological literacy. The Journal of Environmental Education, 40(3), 13-26.

  3. Ceccarelli, L. (2001). Uniting Biology and the Social Sciences: A Rhetorical Comparison of EO Wilson's Consilience and Theodosius Dobzhansky's Mankind Evolving. Poroi, 1(1), 4.

  4. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824.

  5. Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-466.

  6. Rahm, J., & Moore, J. C. (2015). A case study of long‐term engagement and identity‐in‐practice: Insights into the STEM pathways of four underrepresented youths. Journal of Research in Science Teaching.

  7. Rahm, J., Miller, H. C., Hartley, L., & Moore, J. C. (2003). The value of an emergent notion of authenticity: Examples from two student/teacher–scientist partnership programs. Journal of Research in Science Teaching, 40(8), 737-756.


  1. Billings, S. A. (2015). ‘One physical system’: Tansley's ecosystem as Earth's critical zone. New Phytologist, 206(3), 900-912.

  2. Dobzhansky, T. (2013). Nothing in biology makes sense except in the light of evolution. The american biology teacher, 75(2), 87-91.

  3. Platt, J. R. (1964). Strong inference. Science, 146(3642), 347-353.

  4. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American philosophical society, 106(6), 467-482.

Relevant Books

  1. Factors of Soil Formation – Jenny

  2. Soil Microbiology, Ecology, and Biochemistry – Paul

  3. Biogeochemistry – Schlesinger

  4. Principles of Terrestrial Ecosystem Ecology – Chapin

  5. Energetic Food Webs – Moore & de Ruiter

  6. Cryopedology – Brockheim

  7. The Princeton Guide to Ecology  - Levin

  8. Soil Ecology and Ecosystem Services  – Wall

  9. Environmental Soil Chemistry  – Sparks

  10.  Soils: Genesis and Geomorphology  – Schaetzl & Thompson

  11. Footprints in the Soil - Edited volume

  12. How People Learn  – National Research Council

  13. Philosophy of Science: A Very Short Introduction – Okasha

  14. Rhetoric  – Aristotle

  15. The Structure of Scientific Revolutions – Thomas Kuhn